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TECHNICAL NOTE 4250

EFFECT OF THE PROXIMITY OF THE WING FIRST-BENDING
FREQUENCY AND THE SHORT-PERIOD FREQUENCY ON
THE "'ATRPLANE DYNAMIC-RESPONSE FACTOR

By Carl R. Huss end James J. Donegan
SUMMARY

A study of the effect of the frequency of the lowest wing structural
mode on the airplane center-of-gravity dynamic-response factor was
made by employing simplified transfer functlons. It was found that the
simplified transfer function adequately predicted the maximum value of
the incremental normsl-load-factor response at the eirplane center of
gravity to isosceles triangle pulse elevator inputs.

The results of the study are presented in the form of preliminsry
design charts which give a comparison between the dynamic-response
factors of the semirigid case and the airplane longitudinal short-period
case and between the dynamic-response factors of the semirigid case and
the steady-state value of the airplane longitudinal short-period
response. These charts can be used to estimete the first-order effects
of the addition of & wing~bending degree of freedom on the short-period
dynamic-response factor and on the maximum dynemic-response factor when
compared with the steady-state response of the system. The results show
that a structurally demped frequency greater than six times the short-
period demped frequency will not affect the dynamic-response factor
of the semirigid short-period response at the asirplane center of gravity
and that, when the frequencies are egual, the semirigid dynamic-response
factor may be as much as 1.6 times that of the short period. The results
glso show thet the maximum dynamic-response factor can be as much as 2.4
times the steady-state response of the system, depending upon the rstio
of the natural frequencies of the structural and short-period modes and
upon the damping of the two modes.

INTRODUCTION

As airplesnes have increased in size, speed, and flexibility, anal-
ysis of the loads, stresses, and deflections associated with the
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longitudinal short-period mode has become increasingly more complex. This
complexity results from the need to include not only the seroelastic
effects associated with structural deformation but alsc the dynamie
effects of structural vibration. Considerable effort is currently being
expended in the field of dynamic analysis and it has become customsry to
express the dynamic effects of both aercelasticity and structural vibra-
tion in terms of a dynamic-response factor which relates the dynamic
response of the airplane to its steedy-state response. The effects of
flexibility are generally associated with a specific response st the
center of gravity of the airplane, especlally in the preliminary design
stages; however, these effects at other points on the airframe (such

as a wing-tip deflection or & strain in a particular structural member)
are often of interest.

The present-day use of thin high-aspect-ratio wings on large
high-speed alrplanes has resulted in a lowering of the frequency of the
wing structural vibratory modes. As a consequence of this reduction in
stiffness, the frequency of the lowest wing vibratory mode is approaching
the frequency of the airplane short-period mode. The proximity of the
frequencies of these two modes has a pronouhced effect on the airplane
dynamic-response factor. Although this effect has been known qualite-
tively for some time and studies of specific configurations have been
made, there has been no simple numerical guide for estimeting the
effects of this design trend. Possibly, thils lack is a natural conse-
quence of the nature of the mathematical transfer functions which
relate the airplane center-of-gravity response to an incremental change
in elevator angle. These transfer functions asre of a type which is
usually regarded as being more adaptable to specific studies than to
generalizaetion.

The purpose of this study was to determine whether the results
obtained by using the complete transfer functions could also be obtained
to a high degree of approximeation with related but greatly simplified
transfer functions and whether this simplification was of such a nature
as to permlt generalizatlon of the results. The present paper illustrates
the nature and validity of the simplification of the transfer function
used and assesses as to both magnitude and trends the effect of the
proximity of the frequencies of the lowest wing structural mode and the
airplane short-pericd mode on the alrplane incrementael normal load fac-
tor at the airplene center of gravity. The results are summarized in
the form of design charts which, it is believed, will be of value in
the preliminary design stages of an airplane.
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SYMBOIS

generalized nondimensional mass-coupling term between Z
and h degrees of freedom, a.Zh/pSc

generalized nondimensional mass term of flexible-wing mode
between elastic wing and h degree of freedom, auh /pSE:'

generalized nondimensional masgs- coupling term between 6
end h degrees of freedom, &gy /ﬁs

generalized maess-coupling term between Z and h degrees
b./2
o
of freedom, 2f / {m'WE‘L‘Z(y)] - S'wf¢(y)} dy,s slugs
0

generalized mass term of flexible-wing mode between elastic
bo /2 )
'elf ()] -
wing and h degree of freedom, 2f nm w[ 2 y]
2
28" £, (y)Ey(y) + I'w[f¢(y)_-[ } dy,s slugs
generalized mass-coupling term between 6 and h degrees of
b 2
freedom, f [S‘wfz(y) + I'wf¢(y) - m' 28, (y) +
Zf¢(y)} o» slug-ft
wing span along elastic sxis, ft

. C9 dimensional transfer-function coefficients for
semirigid case

nondimensional transfer-function coefficlents

. . C
? for semirigid case

force coefficient dve to elastic-wing deflection, Fh /qS

airplane pitching-moment coefficient sbout the center of
gravity, M/qSc

airplane normal-force coefficient at the airplene center of
gravity, Fy /q_S
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ot

wing mean aserodynamic chord, ft

:D:._d'v
at—
c
EK kinetic energy, ft-1lb o
Ep potentisl energy, ft-1b
F force, 1b
FN alrplane normal force at center.of gravity, positive down-
ward, 1b
fz(y) spanwvise bending-mode shape along wing elastic axis
f¢(y) spanwise twisting-mode shape sbout wi elsstic axis per
unit tip bending deflection, radians/ft
£ acceleration due to gravity, f‘b/sec2 -
H wing-tip deflection, h/C, chords
h wing~tip deflection of elastic axis due to bending, positive
downward, ft
1 1 2 2/
I section moment of inertla, m' X", slug-ft=/ft

Kos Ky K>, K?, Kg, Kg dimensional rigld transfer-function coefficients

K’l, K'2, K'7, K'8, K'9 nondimensional rigid transfer-function coeffic-

ients
Ky radius of gyration ebout Y-axis, chords
k reduced angular frequency, wE/V

longltudinel distance from airplane center of gravity to wing
elastic asxis (function of spanwise location), positive
forward, It

M pitching moment about center of gravity, ft-1b
My, Mp, Dy mass, slugs :

m' section mass, slugs/ft
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Tor Ty

r._, P'2,

incremental normal load factor at airplane center of gravity
(positive upward), g units

dynamic pressure, 1b/sq f4; elso, pitching enguler velocity,
radiens/sec

wing plan-form area, sq £t
section mass moment about elastic axis, m' X, slug-ft/ft

Laplace transform variable

period of oscillation, %g, sec

duration of triangular input, sec

time, sec

velocity, fps -
longitudinal displacement, positive forward, £t
lateral or spanwise dlsplacement, £t

vertical displacement of airplane center of gravity, positive
downward, £t

vertical wing deflection of elastic axis due to wing
bending, positive downward, ft

angle of attack positive when wing leading edge is up, radians
. I5 dimensional quasi-steady trensfer-function coefficients

o It nondimensional quasi-steady transfer-function
2 coefficients

dynamic-response factor at airplane center of gravity,
(Amﬂyn)max/énstatic

incremental elevator deflection, positive when trailing edge
is up, deg

angle of pitch gbout airplane center of gravity, positive
nose up, radians

sweep angle of elastic wing, deg
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M nondimensionel airplane mass, mA/DSE

£ damping parameter, percent of critical damping

mass density of air, slugs/cu ft

¢ angle of twist of airfoil in plane perpendicular to elastic
axis, positive when wing leading edge is up, radians

N angular freguency, radians/sec

Subscripts:

A ailrplane

d . .. damped

dyn dynamic

f fuselage; structural

h flexible-wing degree of freedon

max meximum

n natural .

o exposed wing

sp short periocd

sr semirigid

W wing

Z vertical degree of freedom -

8 pltching degree of freedom -

Dots are used to indicate differentiation with respect to time; for
example, & = d¢/dt. The subscripts «, &, K, h, g, H, and
8 indicate differentiation with respect to the subscripts; for example,

-
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GENERAL CONSIDERATTIONS

In the preliminary design stage of an airplane, the designer can,
with presently available methods, estimate the longitudinal short-period
dynamic-response characteristics of the center of gravity of a given
configuration for rigid and quasi-steady airframes. The rigid air-
frame is defined in this paper as a structure that does not deform or
vibrate, the quasi-steady airframe as one which can deform but not
vibrate, and the semirigid alrframe as one which can both deform and
vibrate. The problem that the designer is faced with in this preliminsry
design stage is the effect of the airframe vibratory modes (particularly
those of the wing since it is usually the most flexible) on the
quesi-steady airframe longitudinal short-period dynamic response. The
methods available for calculating these effects are usually rather com-~
plex or require infermation which would probably not be readily avail-
able at this stage of the design. The designer needs, therefore, some
meens of estimating these effects which are simple and are based on
parameters which would be available.

In this paper such means are presented in the form of preliminary
design charts which can be used to estimate the effects of the proximity
of the frequencies of the lowest wing structural mode and the airplane
short-period mode (quasi-steady case) on the dynamic response at the
center of gravity of the semirigid sirplane. The design charts are
based on the phllosophy that in the preliminasry design stage of a par-
ticular configuration the designer will be gble to compute either the
maximum incremental normal loed factor for the quasi-steady case or the
steady-state value of the incremental normal load factor of the quasi-
steady case. The charts are restricted to estimating the effects of
only the lowest vibratory wing bending mode on the incremental normsal-
load-factor response at the center of gravity to elevator control inputs.
All other structural parts are considered rigid. The charts are further
restricted to a comparison of dynamic-response factors which are defined
as

Y = (Aﬂdyn)maxlénstatic (l)

where OAn ) is the maximum amplitude of the first peak of the

time history of the Ilncremental normal losd factor at the center of
gravity end Ang; .;. 1is the steady-state amplitude of the time history

of incremental normal load factor.
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METHOD OF ANALYSTS

The procedure followed in this paper for studying the effect of the
proximity of the frequencies of the lowest structural wing mode and the
short-period mode on the incrementel normael-losd dynsmic-response fec-
tor at the airplane center of gravity was patterned after that of refer-
ences 1 and 2. Dynamic systems representing the incrementel-normal-
load-factor response at the center of gravity to an elevator input and
defined mathematlically by transfer functions were excited by various
isosceles triangular inputs and the meximum values of the resulting time
regponses were expressed as ratios to the steady-state response factors.
This procedure was followed for systems having the quasi-steady mode coupled
with a structural mode (semirigid case) and for the quasi-steady mode
alone for a wide range of configurations and frequencies and dampings of
the two modes. The dynamic-response factors thus obtained for the system
with two modes were then expressed as ratlios to those obtained for the
system with one mode to determine the effects in question.

Although triangular inputs were used in this study, it is believed
that comparable results would be obtained for other shapes of pulse-
type inputs since the process of expressing the semirigid results as
ratios to the short-period results tend to eliminate the effects of
different-shaped inputs. 1Isosceles triangle Iinputs were used in this
paper for the following reasons: +they approximate in shape severe
pilot-imposed inputs; their frequency content could be easily varied by
changing their duration Ti; their frequency content could be made

sufficlient to excite the wing structural mode; and they could be easily
handled mathematically both by manual calculation and by automatic elec-
tronic calculation.

For existing airplanes with hlgh-aspect-ratio, thin, flexible wings,
the lowest structural frequency is usually associasted with wing bending
and, therefore, wing bending was selected as the lowest structural mode
for this investigation. The theoretical system chosen for this study
consisted of three degrees of freedom: freedom in pitch, vertical trans-
lation, and wing bending. The equations of motion developed by Lagrange's
method describing this system have been previocusly esteblished and are
presented in reference 3. For convenlence they are slso restated in
appendix A of thils paper.

The assumptlons made in this study included the following: lin-
earity, no change 1n airplane forward velocity, small perturbations,
end rigidity of the fuselage and tail assemblies. These assumptions may
be summarized by the assumption that the motions of an sircraft with
flexible wings are described by the equations given in appendix A. It
was further assumed that the aircraft is statically and dynamically
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stable longitudinally, that is, that the aircraft short-period mode
and structural mode are oscilletory and are demped.

As mentioned earlier in this section, the dynamic systems used in
this paper were defined mathematically by transfer functions relating
the incremental normal load factor at the center of gravity to an incre-
mental elevator input. Some of the terms in the transfer functions
could be eliminated with small loss In accuracy and the analysis was
made by using these simplified transfer functions. In order toc show
this relationship, it is first necessary to define the complete transfer
functions and then demonstrate the simplifications that can be made to
obtain the simplifiled but practical transfer functions. Hereafter in
this paper the word “complete" will refer to transfer functions containing
all the terms and the word "simplified"” will refer to the transfer func-
tion with some of its terms omitted.

Complete Transfer Functions

The complete transfer functions relating the incremental normal
load factor at the center of gravity to the incremental elevator angle
input for the semirigid case, the gquasi-steady case, and the rigid case
were obtained from the equations of motion given in appendix A.

Semirigid case.- The transfer function for the semirigid case
which defines a system that has both wing quasi-steady deformation and
wing vibration is, in nondimensionsl form,

An (3'53lL + C'6s3 + C'-?s2 + C'Ss + 0'9
{s) = " 5 (2)
e 5° + C'ls5 + C‘2s + C'Bs + C'h

wvhere the definitions of the C' coefficients are given in gppendix B.
In dimensional form the transfer function may be written as

L 3 2
C5s + C6s + CTS +-Css + C9

Sh + Cls5

(3)

Oon =
Ase(S) + C.s° + C.s + C
o8 F L3S I

where the conversion factors of C' to C are given in appendix C.
The static value of this transfer functlon is seen to be 09/Ch' The
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characteristic equation mey be factored into two gquadratic equations
by Graeffe's method and written as

5 -
An 5) = Q5sh + 06s5 + CTS + Css + 09

) [52 * 2tgp(0n) S * (‘“n)spz] [82_+ 2 (@n) o5 + () fa]

(%)

Quasi-steady case.- As indicated in reference 4 by letting rates
of wing-tip deflection D°h = Dh = O in the equations for the semirigid
case, the transfer function for the quesi-steady case may be formed.
In this case the wings can deform but do not vibrate. The transfer
function for the quasi-steedy case may be written as

2
s + Fhs + I
8 (s) = 25 — (5)
e s- + I‘ls + F2

where the I’ coefficients are defined in appendixes B and C. The static
value of this function is seen to be IB/Té. It is interesting to note

that the static value of the semirigid case is equal to the static value
of the quasi-steady case Cg/Ch = IB/IE, since I I, = C,C') and

IM_ =C.C',.
To''s = %" 9

Rigid case.- By letting D2h =Dh =h =0 in the equation for
the semirigid case, the transfer function for the rigid case may be
formed and written as _

2
8~ + Knas + K7
S)=I<92 8
+ Kis + K.2

¥

(6)

>

Be
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where the X coefficlents are defined in appendixes B and C. Although

the transfer functions of the rigid case and the quasi-steady case have

the same form, the transfer ccefficients of the two cases differ in that
the transfer coefficients of the riglid case are modified by the effects

of wing deformation to give the quasi-steady-case trensfer coefficients.
The static value of this function is K#/Ké-

Simplified Transfer Functions

In order to determine whether the number of terms in the complete
transfer functions could be reduced, studies of 15 airplene configura-
tions were made on an electronic amnalog compubter by using the complete
transfer functions for the semirigid case (eq. (4)) and the quasi-steady
case (eq. (5)). The configurations used covered a rsnge of wing sweep
angles from Q° to 60?, of ratios of wing mass to airplane mass from 0.15
to 0.50, of airplene center-of-gravity positions from 0.25c¢ to 0.45¢,
and of dynamic pressures from 100 to 800 pounds per square foot. These
studies indicated that some of the terms in the numerator of the trans-
fer functions did not contribute appreclably to the maximum value of
the time history of incremental normal load fector for triangular Inputs
but merely acted as phase shifters and thus were not required for the
purposes of the present study. Typical results of these studies are
shown for the semirigid case in figures 1 and 2 and for the quasi-steady
case in figures 3 and L.

Semirigid case.- The contribution of the numerator terms of the
senirigid transfer function with each numerstor coefficient equal to
unity is shown in figure 1(a). In figure 1(b) the contribution of each
of these same numerator terms is shown for typical values of the coef-
ficients. From plots such as these it is seen that the C9 term makes

the most important contribution to the maximum value of the Ilncremental
normal load factor.

Calculstions of incremental normal-load-factor tlme response to
isosceles triangle inputs were then made by using only the 09 term

in the semirigid transfer function. These time histories were compared
with time histories obtained from the complete transfer funcitlion
(eq. (%)), to determine how well the simplified transfer function (09

term only in the numerator) described the maximum value of the time
response of incremental normael load factor for trianguler inputs.
Typical compasrisons are shown in figure 2(a) for the case when the fre-
quencies of the modes are different and in figure 2(b) for the case
when the frequencies of the modes are equal.
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On the basis of such computations it was determined that the complete
semirigid transfer function (eq. (4)) could be reduced to

Ao gy = % _
A8 l?E + zgspenn)sps + éwn)spf}[%E + 2gf<wh)fs + (wn)fé]

(7)

and still adequately describe the maximum value of the time history of
incrementsl normel load factor for triangulaer inputs. The use of the
word "adequately" in this paper means generslly to within about 3 per-
cent and rarely more then about 10 to 15 percent.

Quasi-gteady case.- A similar procedure was used to determine the
contribution of the terms in the numerator of the quasi-steady transfer
function (eq. (5)) to the maximum value of the time response of the
incremental normal load factor. In figure 3(a) the contribution of the
numerator terms of the gquasi-steady transfer function with each numerator
coefficient equal to unity is shown. In figure 3(b) the contribution
of each of these same numerator terms is shown for typical values of the

coefficlents. In this case it is seen that ?5 is the important term.

Typlcal comparison of a time history obtained from the reduced transfer

function (IB term only in the numerator) with that obtaeined from the

complete transfer function (eq. (5)) is shown in figure kL.

From comparisons such as that shown in figure 4, it was determined
that the complete quasi-steady transfer function (eq. (5)) could be
reduced to

n : .
An ) > (8)

A8 s +1"ls-i-I‘2

and still adequately describe the meximum value of the time history of
incremental normsl load factor for triangular inputs.

Semirigid short-period case.- Since the denominator of equation (8)
does not equal the short-period part of the denominator of equation (7),
it was found convenlent to define another transfer function. This trans-
fer function will be called the semirigid short-period case and is
defined as .
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An A
An (oY = (9)
A s g2 4 2§smen) ps + (wh) 2

S sp

where the denominator of equation (9) is identical to the short-period
part of the denominetor of equation (7) and the constant A i1s equal to

The use of this semlrigid short-period transfer function as a
basis of comparison rather than the quasi-steady case reduced the compu-
tations to practical proportions. If the guasi-steady case had been.
used, it would have been necessary to estimate & new set of derivatives
which make up the transfer-function coefficients for each new configura-
tion and flight condition. However, by defining the semirigid short
period, it was necessary to choose only the damping and freguency of
the two modes without regard to the derivatives which determine these
perameters.

Actuelly, the semirigid short-period case is practically equsl
to the quasi-steady case since the dasmping and frequency of the two cases
are almost the same for a wide range of configurations and g values.
(See figs. 5 and 6.) A comparison of the nastural frequencies of the
semirigid short-period case with those of the quasi-steady case for a
wide range of configurations and g values is shown in figure 5. A
similar comparison of the demping of the semirigid short-period case
with that of the quasi-steady case is shown in figure 6. The points
shown in figures 5 and 6 were computed from the data of reference 3.
The data of figure 6 indicate that at the higher values of dynemic
pressure the damping of the short-period case is greater than that
of the quasi-steady case. Therefore the maximum value of the
response as well as the maximum dynemic-response factor obtalned
from the short-period case would always be less than that of the quasi-
steady case. Thus the ratios of maximum dynamic-response factors
cbtained by comparing the semirigid case with the short-period case
would always be greater than (on the conservative side) or the same as
those obtained by compering the semirigid case with the quasi-steady
case.

Rigid case.- The complete rigid transfer function (eq. (6)) could
also be reduced to
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T (10)
82 + Kls + Ké b

gnTe(s) =

in order to define the maximum value of the itime history of incremental
normel load factor for triangular inputs.

Typical Calculations Illustrating Method

The method used in this study and the preparation of the desired
preliminsry design cherts involved a large number of calculations and
plots, typical samples of which are shown in figures 7 and 8.

In order to obtain the meximum possible dynamic-response factor:
for the range of the variables, it was first necessary to calculate the
time response to triangular inputs of varying duration (different fre-
gquency content) for each system (a particular combination of the vari-
ables). A sample of these calculations is shown in figure 7 for both
the semirigid short-period and the semirigid cases. Some of these compu-
tations were carried out on automatic electronic computing equipment, some
on desk-type computers, and some were carried out by using the tables of
references 5 and 6 in conjunction with automatic electronic computing
equipment. The dynamic-response factor defined previously as equation (1)
was determined for each case by picking the value of the first peak
of the time histories (see, for example, fig. 7 for T, = 0.4) and

dividing it by the static value for the particular system being con-
sidered. These results were then plotted agalnst the period ratio
Ti/Tsp (ratio of the time base of the input to the natural period of

the short-period mode) in order to determine the maximm dynamic-response
factor for each case. A typical plot of this procedure is shown in
figure 8. The data of figure 8 asre for the same cases as those of fig-
ure 7, the four points shown in figure 8 having been computed from the
results shown in figure 7. ’

From plots stich as that shown in figure 8, it was possible to
ascertain the magnitude and trends of the effects of the proximity of
the frequenciles of the lowest structural mode and the airplane longltu-
dinal short-period mode on the incremental normal-load dynamic-response
factor at the airplane center of gravity. The plotting of these calcula-
tions resulted in the desired preliminary design charts.

‘F
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Range of Varisbles

The results of this study are believed to be valld over a range of
varisbles as follows: dynamlc pressure from 100 to 800 pounds per
square foot, wing sweep angles from 0° to 600, ratios of wing mass to
airplane masss of 0.15 to 0.50; center-of-gravity location from 0.25
to 0.45 mean aerodynamic chord, ratios of damped wing lowest struc-
tural frequency to demped airplane longitudinsl short-period fre-
quency from 1 to 15, and damping of the wing lowest structural mode and
airplane longitudinel short-period mode from O to 95 percent of critical

demping.
RESULTS AND DISCUSSION

The results of ‘this paper are summarized in the form of preliminary
design charts. As mentioned previously, these design charts were obtained
from plots such as those of figure 8 covering a complete range of combi-
nations of the varisbles.

The chart given as figure 9 is a plot of the ratios of maximum
dynamic-response factors (7sr) /(759) against the ratio of the

structural-mode natural frequency divided by the semirigid short-period
natural frequency, the damping of the structural mode being held con-
stant at 2 percent of critical damping. The data of figure 9 were
reduced to a more compact form by converting the abscissa to a ratio of
the damped frequency of the structural mode and the damped semirigid
short-period frequency. This simplificetion is given as the design
chart shown in figure 10.

The design chart shown in figure 10 indicates that, if the damped
structural frequency and the damped semirigid short-period frequency
are equal, the meximum dynamic-response factor of the semirigid case
will be sbout 1.6 times the value of the maximum dynamic-response factor
for the semirigid short-period case. It can also be seen that, when the
ratio of the damped structural frequency and the damped semirigid short-
period frequency is greater than sbout 6, there is no increase in the
meximum dynamic-response factor of the semirigid case over the value for
the semirigid short-period case.

Increasing the damping of the short-period mode of the semirigid
case while holding the demping of the structural mode constant also
results in a decrease in the maximum dynemic-response factor of the
semirigid case. This effect can be seen from the results shown in

figure 9.
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In order to investigate the effect of structural deamping on the
airplane dynasmic-response factor, calculations were made for a semirigid
short-period mode with a natural frequency of 3.162 radians per second
and a damping of 38 percent of eritical damping coupled to a structural
mode having variasble damping of O to 95 percent of critical damping and
a damped frequency equal to the semirigid short-periocd damped frequency
(2.926 radians per second) and equal to 5 times the semirigid short-
periocd damped frequency. Dynamic-response-factor ratios for these cases
are plotted against critical damping of the structural mode in fig-
ure 1l. The result shown in figure 11 indicates that, for a given
value of damping of the short-period part of the semirigid case, an
increase in the damping of the structural mode results in a decrease in
the meximum dynemic-response factor of the semirigid case.

Thus, the data of figures 9, 10, and 11 indicate that, for a given
frequency of the short-period mode of the semirigid caese, an increase in
the frequency and/or an increase in damping of the structural mode and/or
an increase in damping of the semirigid short-period mode result in a
decrease of the maximum dynemic-response factor of the semirigid case.
Figures 9, 10, and 11 would be the ones used by a designer in order to
obtain an estimate of the increase in the incrementsl normal-load
short-period dynamic-response factor at the airplane center of gravity ‘e
due to the proximity of the frequency of the lowest wing structural mode
to that of the airplane longitudinal short-pericd mode. Use of these
figures presumes, as mentioned earlier, that the designer would be able -
to estimate the maximim longitudinal short-period response and would
have an estimate of the lowest wing structural frequency and damping of
the lowest wing structural mode.

Another design figure which mey be useful is one which gives the
effect of the proximity of the structural nstursl frequency tc the short-
period netursl frequency on the meximum semirigid dynamic response when
compared with the semirigid short-period static value. This result weas
. easily obtalned by plotting the semirigid meximum dynamic-response
factor for each case (obtained from plots such as fig. 8 and noting thsat,
as pointed out earlier, the static value of the semirigid and semirigid
short-period cases are equal) against the ratio of the structural
netural frequency to the semirigid short-period natural frequency. Such
a plot is presented as figure 12. '

The designer could use the chart given in figure 12 under the same
restrictions as were mentioned for the previous charts with one excep-
tion. This exception is that in using this chart the designer would
need to know only the airplane longitudinel short-period steady-state
response rather than the maximum short-period response.
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The effect of the input-time base on the dynamic-response-factor
ratio may also be of interest and can be determined from plots such as
that of figure 8. 1In this case, rather than express the maximum values
of the dynamic-response factor as ratios, the values of the dynamic-
response factor of the semirigid and short-period frequencies are
expressed as ratios at specific values of the periocd ratio Ti/TSP and

ere plotted against the period retlic. Typical plots of this dynamic-
response-factor ratio are shown in figure 13 for three values of short-

period damping.

The base of the input that gives the mesximum dynsmic-~response
factor is, of course, different for each case, depending on the damping
of the two modes. It was usually greater than about 0.7 of the natural
period of the short period for all the cases studied in this paper.
Examination of plots, such as those shown in figure 13, indicate that,
when compared for the same trlangle base, the highest ratio of dynamic-
response factor for a frequency ratio of 1.0 will be obtained from
triangular inputs with a base equal to 0.6 to 0.8 of the natural period
of the short period. For freguency ratios greater than 1.0, the ratio
of dynamic-response factors is greatest for triangles with a base equal
to less than 0.1 of the natural period of the short period. Thus, it
is difflcult to pinpoint a specific triangle base as being the one
giving the most severe results.

Since airplanes operate at flight conditions (altitude, airspeed,
center-of-gravity location) which are constantly changing, the frequency
ratio for a particular configuration will not be constant. DPresent-
day large high-speed airplanes with thin, high-aspect-ratio, flexible
wings are operating in the frequency-ratio range of roughly 4 to 10.
The conditions for which the frequency ratio will be a minimum depends
somewhat on the configuration but, in general, operations at low alti-
tude, high airspeed, and forwerd center-of-gravity position should
result in the lowest frequency ratio. This effect can be seen in fig-
ure 14 where the effect of dynamic pressure and eirplane configuration
on the proximity of the damped frequency of the structural mode to that
of the short-period mode is given. The data of this figure were con-
verted from the data of reference 3.

The data of figure 14 show that, for airplanes with unswept wings
or wings with very little sweep, the frequencies of the modes are brought
into closer proximity by en increase in the dynamic pressure or, for a
given dynamic pressure, by moving the center of gravity forward. For
wings with sweep angles greater than about 300, these trends of the
effects of dynemic pressure and center-of-grevity position on the prox-
imity of the frequencies of the modes are the same. For these cases,
however, the aeroelastic effects caused by increasing the dynamic
pressure usually cause the short-period mode to become statically
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unstable (indicated in fig. 1% by the frequency ratio going to infinity)
before the frequencles of the modes can be brought together. Thus, for
a given configuretion the operating conditlons will determine the rela-
tive proximity of the frequencies of the two modes and at what point on
the sbscissas of the design charts the airplane is operasting.

It is well to emphasize that the preliminary design charts given
are only meant to give first-order effects and to apply only to systems
which are statically and dynamically stable. Furthermore, since the
curve given in figure 10 is an envelope of the maximum values of the
converted data of figure 9, it will narmally give comservative values
of the reatio of meximum dynamic-response factors. Finally, for a
particular deslign problem a detailed anelysis including ell the variables
should be made if the "rule-of-thumb" value for the ratio of maximum
dynamic-response factors given by the chart indicates the possibility
of a dangerous situation. '

CONCLUDING REMARKS

The results of thils study of the effect of the frequency of the
first wing bending mode on the airplane dynamic-response factor indicated
that the maximum center-of-gravity load-factor response to a triangular-
shaped pulse elevator input could be adequately determined by using a
simplified transfer function for the gemlirigid and quasi-statlic cases.
The use of the short-period part of the semirigid transfer function ss-

& basls of comparison gave results which were elther equal to or on
the conservative side of those that would have been obtained from the
quasi-steady transfer function.

As a result of the reduction in the number of terms obtained by
using the simplified transfer functions, it was possible to construct
design charts which provide trends and rule-of-thumb estimates of the
effect of the frequency of the first wing-bending mode on the airplane
dynamic-response factor. The charts show that the maximum dynamic-
response factor for the semirigid case will be 1.6 times that of the
short-period case when the damped frequencies of the structural mode
and short-period mocde are equal. Furthermore, when the freqguency ratio
is greater then about 6, a lightly damped structural mode has little
or no effect on the dynamic-response~factor ratio at the airplane
center of gravity, and, as the damping of the structursl mode increases,
the frequency ratio at which the structural mode has negligible effect
also decreases. Finally, the charts indicate that the semirigid maxi-
mum dynemic-response factor can be as much as 2.4 times the steady-
state value of the system, depending on the demping of the structural
and short-period modes and on the ratio of the natural frequencies of
the two modes.
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The dynamic-response factor for a particular configuration will
vary with the operating conditions (principally with dynemic pressure)
but should be & meximum at £light conditions of low altitude, high air-
speed, and forward center-of-gravity position.

It should be repeated that for a particular design problem a
detalled analysis should be made if the rule-of-thumb velue given by
the design charts indicates the possibility of a dangerous situetion.

Langley Aeronautical Laboratory,
Netional Advisory Committee for Aeronautics,
lLangley Field, Va., February 21, 1958.
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APPENDIX A
EQUATIONS OF MOTION

The equatlions of motion used in this paper will be given here
briefly for the convenience of the reader. A complete development of
these equations is shown in references 3 and 4. The equations are
derived on the basis of the Lagrangisn equation:

B\ OB |, OE, _
-CELLt(:Q>-BQ +a§p—FQ (a1)

where

Ek kinetic energy

EP potential energy

Q generalized coordinate

FQ generalized force B

The three generalized coordinates used are:

Z vertical translation -
6 pitching velocity
h displacement of wing tip due to bending of elastic wing

For an unswept wing the flexible-wing mode shape consists of
bending fz(y); end for a swept wing the flexible-wing mode shape

consists of bernding f£,(y) combined with twisting per unit bending
deflection at the wing tip f¢(y). The spanwise bending is ususlly

agsumed to be parebolic and the spanwise twist, linear.
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The nondimensionsl equations of motion thus derived are:

2uD(a - 8) + 24, D°H - Cy, - m<—23= CNDU) .

1
pefL ¢, \ - Hfoy ) - ey ) = Cy 28
(2 Nq) ( NH) ( NDH) Nap, e

1 L

2uKP0%6 + 2ADH - M " DG(E CmD@) ) De<2 Cmq‘) -

28, 0°H + 28, D(a - 6) + 2A D760 + 24 K°H - ¢ a -

D6 (% ch) - E(CFH) - DH(CFDE) = Cp, e

e

and by definition

21

(A3)

(ak)

(45)

Similtaneous solution of equations (A2), (A3), (A4), and (AS5) results

in the semirigid transfer function given as equation (3).
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APPENDIX B
DEFINITION OF TRANSFER-FUNCTION COEFFICIENTS

The transfer coefficients used for the analysis are defined in
this appendix.

Semirigid Case -

The coefficients for the semirigid case are

Co = L’(“'KYEAhh - A6h2) <2“ B £2L' CNDa) ) Z(ABhAZhC‘“Da. * huKYgAZhE)
Co

erhcmDH) (2“ - % CNm) + (l"ABhAZh + Ahhcmm) (‘2‘* - % ) +

o=

{"*thmbch + 2“‘1&}:1(2“ - % CND@)] (2"‘21:1 + CFq) + l‘Aah("‘ehCNm -

2
Athma) * AgnCop Oy * 2Azn Cmy



NACA TN L4250 2%

2

oo = g { i (o0 - 3 o+ (o 0 - 0p O+ 2ol +

a “DH
( nlr " 2‘-‘K12°FH + :aAehcmH)(au -1 cNm) + (athmm -
2Aenr_ - 5 CNDHCch,) (ZAZh *5 O ) ( 2 nCm, - 2henCy_ -
PhoyCn - 3 cFDHcmm) (-Ep. -z ch) + Co [ Cry, - AZh(CFa +

CNDH)] " Hon (CmchNDH " O gy z CNHCmDa.) " O (2 -

o - (et - )« -2
g ) ol o) [
LS CE LR U T
) ) g S g

Ecch.CF )(2;1--0 ) (CF O ™ N CFpg aAZhCNE)%cmq}
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Cl

L™ éa {[% CNacmqﬂ + Cma<‘2“ - % Cx, )] (aAhth . CFH) + <CNaCmH -
CmaCNH> <2AZh * % CFO) * [CFa.CmH (-2P- - 2 CNQ_B ¥ %’3 CquFa'CNH}

Lo 2 2
s = &s (L”.\eh Cyg = “AznfonCmg - My A’n.hCN5)

Clg = g%o ththa (Copg, * Cmg) = AnnCig (O, + Oniy) + honCrg (A -

C“’DH) + 2(1-\thm5 - AthNS) (ZAZh + ;2L- ch) + Ecm5 (AehCNDH -

2) 2
28, 2) + 20, %op ©
b Fom Ns]

c'7 = E‘é-a {-huKYECNaAhth + 2A,thm8 (CNDH + CF@) + 284 (Cmu.CNB -
On Oy ) *+ z'_z;eh(czl\;ﬂqn‘(3 - CFGCst) + (CD’DHCNa - CNDHC‘.mS)(zAm +
% ch> + % CFDHCEB (CND@ + ch) - % CFDHCNS (Cmm + cmq) +

v (“KYECFﬁ " Ay - Aehci‘f{}]
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8 =_‘éE{Ahhk2cN6(c%a+cmq)-Amk cN +cN + C [Na.
Py T % CFH(CNDCL * CNq)] * CN&[ o gy~ O Py CFH(CmDu *

Cag )| * 2Oy - Cu ) *+ (O - CNHC'”‘G)( *3 CF‘l)}

9 =gVTo _(Cmmcl‘f& ¢ ma)(aAhhk " Org) * e, (g - CmﬁcNH)]

Quasi-gteady Case

The coefficients used in the analysis for the quasi-steady case are
as follows:

r, = 2uky (2u - Loy )(EAhhk o ) + Aoyl Cx + L‘“KrzAZhCNH +

PhgnC mH< -3 CNDa,)

R {[*ﬂ% oy Fo, )+ B o2 - 3oy )| lon

) o On Sy g (- ) - -

-

g, )(Bhan + 3 ) - g (24 O, + hanCn ) - o o (P +

o)}

|-
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1'\l

7t

Iy g%[-zuxx Cs (E.Ahhk - cFH) + 2Ag, (c_ir_ﬂacNH - CNacmH):}

Rigid Case

The transfer functions used in the analysis for the rigid case are
as follows:

Ko = 26Ky (2 - § )

Ky = I%-o [- 'Je;ch(gu -3 CNDa) B Cmm( "2 CNQ)]
Ky = & B équNm " Cn (247 3 N



NACA TN 4250

K, = i(- cchm6 + CNBCma,)

.[Cms(Zp - % CNDQ,) + O (-2u - % ch) + -;: CNS (cmDOL + cmq)}

5l

7~
It

2
('EMKY CNa)

&=

27
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APPENDIX C

CONVERSION FACTORS FOR DIMENSIONALIZING THE NONDIMENSIONAL

TRANSFER -FUNCTION COEFFICIENTS

The conversion factors for dimensionelizing the nondimensional
trensfer functions for the semirigid case are as follows:

B AAPY
1= (3
V'2
Ce=(z)ce

3
_{yv )
%3 (a)cﬁ
L
e (2

_jY
o= (3)ry
o
v
I, = (’a‘) My

L
_ v\t
C9‘<a>c9

The conversion factors for dimensionalizing the nondimensional
transfer functions for the quasi-steady case are as follows:
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The conversion factors for dimensionslizing the nondimensional
transfer functions for the rigid case are as follows:

2

% = (BE & = (3)xy
v 2 )

K = (3) %, kg = (TK'g
.

= (E) K5 Ky =Ky
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Figure 1l.- Contribution of individual numerator terms of the semirigid

transfer function %g—(s) = 2
e

4 3 2
C_.s* + (08’ + C8° + Cas + C
6 T 8 9tothe

sh 4+ ;83 + 2 + Css + Cy

complete response to a unit-amplitude isosceles tria.nglé input
with Ty = 1.0, C; = 15.k41k, C, = 116.8380, Cz = 350.6639, and

C) = 55k.5269.
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Figure 1k.- Effect of dynamic pressure q on the frequency ratio
(a:d) /(wd) for various wing sweep angles, wing-mass-to-
T, sp

airplane-mass ratios, and center-of-gravity locations.
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Figure 14.- Concluded.
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